Package: lorad 0.0.1.0
lorad: Lowest Radial Distance Method of Marginal Likelihood Estimation
Estimates marginal likelihood from a posterior sample using the method described in Wang et al. (2023) <doi:10.1093/sysbio/syad007>, which does not require evaluation of any additional points and requires only the log of the unnormalized posterior density for each sampled parameter vector.
Authors:
lorad_0.0.1.0.tar.gz
lorad_0.0.1.0.zip(r-4.5)lorad_0.0.1.0.zip(r-4.4)lorad_0.0.1.0.zip(r-4.3)
lorad_0.0.1.0.tgz(r-4.4-any)lorad_0.0.1.0.tgz(r-4.3-any)
lorad_0.0.1.0.tar.gz(r-4.5-noble)lorad_0.0.1.0.tar.gz(r-4.4-noble)
lorad_0.0.1.0.tgz(r-4.4-emscripten)lorad_0.0.1.0.tgz(r-4.3-emscripten)
lorad.pdf |lorad.html✨
lorad/json (API)
# Install 'lorad' in R: |
install.packages('lorad', repos = c('https://amilkey1.r-universe.dev', 'https://cloud.r-project.org')) |
- gtrigsamples - Sequence data used in gtrig vignette
- k80samples - Sequence data used in k80 vignette
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 11 months agofrom:97d5408c6f. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 08 2024 |
R-4.5-win | OK | Nov 08 2024 |
R-4.5-linux | OK | Nov 08 2024 |
R-4.4-win | OK | Nov 08 2024 |
R-4.4-mac | OK | Nov 08 2024 |
R-4.3-win | OK | Nov 08 2024 |
R-4.3-mac | OK | Nov 08 2024 |
Exports:lorad_estimatelorad_summary
Dependencies:
bridge-sampling-vignette
Rendered frombridge-sampling.Rmd
usingknitr::rmarkdown
on Nov 08 2024.Last update: 2023-12-18
Started: 2023-12-18
lorad-gtrig-vignette
Rendered fromLoRaD-gtrig-vignette.Rmd
usingknitr::rmarkdown
on Nov 08 2024.Last update: 2023-12-18
Started: 2023-12-18
lorad-k80-vignette
Rendered fromlorad-k80-vignette.Rmd
usingknitr::rmarkdown
on Nov 08 2024.Last update: 2023-12-18
Started: 2023-12-18
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Sequence data used in gtrig vignette | gtrigsamples |
Sequence data used in k80 vignette | k80samples |
Calculate a sum on log scale | lorad_calc_log_sum |
Calculates the LoRaD estimate of the marginal likelihood | lorad_estimate |
Transforms unconstrained parameters to have the same location and scale | lorad_standardize |
Transforms training sample using training sample means and standard deviations | lorad_standardize_estimation_sample |
Summarize output from 'lorad_estimate()' | lorad_summary |
Log (or log-ratio) transform parameters having constrained support | lorad_transform |